
Introduction to
Javascript

Content mostly taken from https://web.stanford.edu/class/cs193x/

How do web pages work
again?

You are on
your laptop

Your laptop is running
a web browser, e.g.

Chrome

You type a URL in
the address bar and

hit "enter"
http://ww2.cs.fsu.edu/~faizian/cgs3066

(Warning: Somewhat inaccurate,
massive hand-waving begins now.

See this Quora answer for slightly more detailed/accurate handwaving)

https://www.quora.com/What-is-the-role-of-OSI-layers-when-we-open-a-webpage

Browser sends an HTTP request saying
"Please GET me the index.html file at

http://ww2.cs.fsu.edu/~faizian/cgs3066"

ww2 Server at cs.fsu

(Routing,
etc…)

Assuming all goes well, the
server responds by sending the
HTML file through the internet
back to the browser to display.

ww2 Server at cs.fsu

The HTML will include things like <img
src="logo.jpg" /> and <link

src="style.css" .../> which generate more
requests for those resources

ww2 Server at cs.fsu

And the server replies with
those resources for the

browser to render

ww2 Server at cs.fsu

Finally, when all resources are loaded,
we see the loaded web page

http://ww2.cs.fsu.edu/~faizian/cgs3066

+ produces

Describes the
content and
structure of

the page

A web page…

that doesn't do
anything

Describes the
appearance
and style of

the page

What we've learned so far
We've learned how to build web pages that:

- Look the way we want them to
- Can link to other web pages

But we don't know how to build web pages that do anything:

- Get user input
- Save user input
- Show and hide elements when the user

interacts with the page
- etc.

What we've learned so far
We've learned how to build web pages that:

- Look the way we want them to
- Can link to other web pages

But we don't know how to build web pages that do anything:

- Get user input
- Save user input
- Show and hide elements when the user

interacts with the page
- etc. Enter

JavaScript!

JavaScript

JavaScript
JavaScript is a programming language.

It is currently the only programming language that
your browser can execute natively. (There are
efforts to change that.)

Therefore if you want to make your web pages do
stuff, you must use JavaScript: There are no other
options.

https://www.dartlang.org/

JavaScript
- Created in 1995 by Brendan Eich

(co-founder of Mozilla; resigned 2014 due to his homophobia)

- JavaScript has nothing to do with Java

- Literally named that way for marketing reasons

- The first version was written in 10 days

- Several fundamental language decisions were made because of company
politics and not technical reasons

"I was under marketing orders to make it look like Java but not make it too big for its
britches ... [it] needed to be a silly little brother language." (source)

http://www.huffingtonpost.com/michelangelo-signorile/donald-sterling-brendan-eich-and-how-homophobia-gets-a-pass_b_5239389.html
https://www.w3.org/community/webed/wiki/A_Short_History_of_JavaScript
https://www.computer.org/csdl/mags/co/2012/02/mco2012020007.html

JavaScript
in the browser

Code in web pages
HTML can embed JavaScript files into the web page via the <script> tag.

<!DOCTYPE html>
<html>
 <head>
 <title>CS 193X</title>
 <link rel="stylesheet" href="style.css" />
 <script src="filename.js"></script>
 </head>
 <body>
 ... contents of the page...
 </body>
</html>

console.log

You can print log messages in JavaScript by calling console.log():

console.log('Hello, world!');

script.js

This JavaScript's equivalent of Java's System.out.println, print,
printf, etc.

How does JavaScript get
loaded?

 <head>

 <title>CS 193X</title>

 <link rel="stylesheet" href="style.css" />

 <script src="script.js"></script>

 </head>

The browser is parsing the HTML file, and gets to a script

tag, so it knows it needs to get the script file as well.

 <head>

 <title>CS 193X</title>

 <link rel="stylesheet" href="style.css" />

 <script src="script.js"></script>

 </head>

The browser makes a request to the server for the script.js

file, just like it would for a CSS file or an image...

 <head>

 <title>CS 193X</title>

 <link rel="stylesheet" href="style.css" />

 <script src="script.js"></script>

 </head>

And the server responds with the JavaScript file, just like it

would with a CSS file or an image...

 <head>

 <title>CS 193X</title>

 <link rel="stylesheet" href="style.css" />

 <script src="script.js"></script>

 </head>

Now at this point, the JavaScript file will execute

"client-side", or in the browser on the user's computer.

console.log('Hello, world!');

JavaScript execution
There is no "main method"

- The script file is executed from top to bottom.

There's no compilation by the developer

- JavaScript is compiled and executed on the fly by the browser

(Note that this is slightly different than being "interpreted": see just-in-time
(JIT) compilation)

https://hacks.mozilla.org/2017/02/a-crash-course-in-just-in-time-jit-compilers/
https://hacks.mozilla.org/2017/02/a-crash-course-in-just-in-time-jit-compilers/

console.log('Hello, world!');

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <title>First JS Example</title>
 <script src="script.js"></script>
 </head>
 <body>
 </body>
</html>

script.js

first-js.html

Hey, nothing happened!

Right-click (or control-click on Mac) and choose "Inspect"

Click "Console" tab

The "Console" tab is also a REPL, or an interactive language
shell, so you can type in JavaScript expressions, etc. to test

out the language.

We will be using this throughout the quarter!

https://en.wikipedia.org/wiki/Read%E2%80%93eval%E2%80%93print_loop

JavaScript
language features

Same as Java/C++/C-style langs
for-loops:

for (let i = 0; i < 5; i++) { … }

while-loops:
while (notFinished) { … }

comments:
// comment or /* comment */

conditionals (if statements):
if (...) {

 ...
 } else {
 ...
 }

Functions
One way of defining a JavaScript function is with the following syntax:

function name() {
 statement;
 statement;
 ...
}

Console output

function hello() {
 console.log('Hello!');
 console.log('Welcome to JavaScript');
}

hello();
hello();

script.js

Console output

function hello() {
 console.log('Hello!');
 console.log('Welcome to JavaScript');
}

hello();
hello();

script.js

The browser "executes" the function
definition first, but that just creates the
hello function (and it doesn't run the hello
function), similar to a variable
declaration.

hello();
hello();

function hello() {
 console.log('Hello!');
 console.log('Welcome to JavaScript');
}

script.js

Q: Does this work?

hello();
hello();

function hello() {
 console.log('Hello!');
 console.log('Welcome to JavaScript');
}

script.js

A: Yes, for this particular syntax.

This works because function declarations are
"hoisted" (mdn).

You can think of it as if the definition gets moved to
the top of the scope in which it's defined (though
that's not what actually happens). Console output

https://developer.mozilla.org/en-US/docs/Glossary/Hoisting

hello();
hello();

function hello() {
 console.log('Hello!');
 console.log('Welcome to JavaScript');
}

script.js

Caveats:

- There are other ways to define

functions that do not get hoisted;

- Try not to rely on hoisting when

coding. It gets bad.
Console output

http://www.adequatelygood.com/JavaScript-Scoping-and-Hoisting.html

